Optical neurophysiology in freely moving C. elegans

Andrew Leifer

Lewis-Sigler Institute <u>http://leiferlab.princeton.edu</u>

Ce Neuro Conference University of Wisconsin, Madison 9 July 2014

Thursday, July 10, 14

mec-4::ChR2, rig-3::GCaMP3::sl2::mCherry

Shipley et al., Front Neural Circuits, 2014

mec-4::ChR2, rig-3::GCaMP3::sl2::mCherry

Shipley et al., Front Neural Circuits, 2014

mec-4::ChR2, rig-3::GCaMP3::sl2::mCherry

Shipley et al., Front Neural Circuits, 2014

mec-4::ChR2, rig-3::GCaMP3::sl2::mCherry

Shipley et al., Front Neural Circuits, 2014

mec-4::ChR2, rig-3::GCaMP3::sl2::mCherry

Shipley et al., Front Neural Circuits, 2014

 Working in a behaving animal is the only way to directly probe neural coding of behavior

- Working in a behaving animal is the only way to directly probe neural coding of behavior
- Genetic or laser ablation studies lack insights into neural dynamics

- Working in a behaving animal is the only way to directly probe neural coding of behavior
- Genetic or laser ablation studies lack insights into neural dynamics
- .. and the tools are finally available

Outline

- Give a broad overview of existing methods in freely moving worms for
 - Optogenetics
 - Calcium imaging
- Discuss practical matters for adopting these techniques in your lab
- Thoughts about the future

Note: no discussion of scientific results

Optical neurophysiology in moving worms requires real-time tracking

- At a minimum feedback is needed to control a stage to keep the worm in the field of view
- A human can provide feedback: steady hands and patience

Clark et al, J. of Neuroscience 2007.

Real-time computer vision software based on worm outline.

First implemented by Ben Arous et al., 2010; (Schafer lab)

Same strategy can be used for tracking or for generating targeted illumination patterns

Real-time computer vision software based on worm outline.

First implemented by Ben Arous et al., 2010; (Schafer lab)

Same strategy can be used for tracking or for generating targeted illumination patterns

Real-time computer vision software based on worm outline.

First implemented by Ben Arous et al., 2010; (Schafer lab)

Same strategy can be used for tracking or for generating targeted illumination patterns

Code: <u>http://git.io/colbert</u>

Real-time computer vision software based on worm outline.

First implemented by Ben Arous et al., 2010; (Schafer lab)

Same strategy can be used for tracking or for generating targeted illumination patterns

Code: <u>http://git.io/colbert</u>

Thursday, July 10, 14

Computer vision based feedback keeps the worm centered over a high magnification objective

	Image processing of bright or darkfield images		
Pro	 Most widely adopted Can track any point Worm body is bright Open source software solutions 		
Con	 Neural locations are only inferred from worm outline 		
Ref	 Ben Arous et al., 2010 Leifer et al., 2011 Stirman et al., 2011 		

та.	e.	
	Image processing of bright or darkfield	
	images	
	 Most widely adopted 	
Pro	 Can track any point Worm body is bright Open source 	
	software solutions	

- Neural locations are only inferred from worm outline
 Ben Arous et al., 2010
- Ref Leifer et al., 2011
 - Stirman et al., 2011

	Image processing of bright or darkfield images	Analog fluorescence
Pro	 Most widely adopted Can track any point Worm body is bright Open source software solutions 	 Commercial system available (ASI) Tracks neurons directly
Con	 Neural locations are only inferred from worm outline 	 Poorly suited for targeted illumination
Ref	 Ben Arous et al., 2010 Leifer et al., 2011 Stirman et al., 2011 	• Faumont et al., 2011

	Image processing of bright or darkfield images	Analog fluorescence
Pro	 Most widely adopted Can track any point Worm body is bright Open source software solutions 	 Commercial system available (ASI) Tracks neurons directly
Con	 Neural locations are only inferred from worm outline 	 Poorly suited for targeted illumination
Ref	 Ben Arous et al., 2010 Leifer et al., 2011 Stirman et al., 2011 	• Faumont et al., 2011

	Image processing of bright or darkfield images	Analog fluorescence	Image processing of fluorescence images
Pro	 Most widely adopted Can track any point Worm body is bright Open source software solutions 	 Commercial system available (ASI) Tracks neurons directly 	 Tracks neurons directly Has advantages for targeted illumination
Con	 Neural locations are only inferred from worm outline 	 Poorly suited for targeted illumination 	 No open source software No commercial system
Ref	 Ben Arous et al., 2010 Leifer et al., 2011 Stirman et al., 2011 	• Faumont et al., 2011	 Kowano et al., 2011 Kocabas et al., 2012

1					
	Image processing of bright or darkfield images	Analog fluorescence	Image processing of fluorescence images		
Pro	 Most widely adopted Can track any point Worm body is bright Open source software solutions 	 Commercial system available (ASI) Tracks neurons directly 	 Tracks neurons directly Has advantages for targeted illumination 		
Con	 Neural locations are only inferred from worm outline 	 Poorly suited for targeted illumination 	 No open source software No commercial system 		
Ref	 Ben Arous et al., 2010 Leifer et al., 2011 Stirman et al., 2011 	• Faumont et al., 2011	• Kowano et al., 2011 • Kocabas et al., 2012		

		Quad PMT		A A A A A A A A A A A A A A A A A A A
	Image processing of bright or darkfield images	Analog fluorescence	Image processing of fluorescence images	Wide-field
Pro	 Most widely adopted Can track any point Worm body is bright Open source software solutions 	 Commercial system available (ASI) Tracks neurons directly 	 Tracks neurons directly Has advantages for targeted illumination 	 No tracking at all because worms never leave the field of view Multiple worms simultaneously
Con	 Neural locations are only inferred from worm outline 	 Poorly suited for targeted illumination 	 No open source software No commercial system 	 Incompatible with targeted illumination
Ref	 Ben Arous et al., 2010 Leifer et al., 2011 Stirman et al., 2011 	• Faumont et al., 2011	• Kowano et al., 2011 • Kocabas et al., 2012	• Larsch et al., 2013

		Quad PMT		A A A A A A A A A A A A A S Ch et al., 2013
	Image processing of bright or darkfield images	Analog fluorescence	Image processing of fluorescence images	Wide-field
Pro	 Most widely adopted Can track any point Worm body is bright Open source software solutions 	 Commercial system available (ASI) Tracks neurons directly 	 Tracks neurons directly Has advantages for targeted illumination 	 No tracking at all because worms never leave the field of view Multiple worms simultaneously
Con	 Neural locations are only inferred from worm outline 	 Poorly suited for targeted illumination 	 No open source software No commercial system 	 Incompatible with targeted illumination
Ref	 Ben Arous et al., 2010 Leifer et al., 2011 Stirman et al., 2011 	• Faumont et al., 2011	• Kowano et al., 2011 • Kocabas et al., 2012	• Larsch et al., 2013

Example of freely moving calcium imaging setup

Leifer (thesis) 2012; Leifer & Clark, in prep

Thursday, July 10, 14

Challenge	Strategy	Solution
Keeping up with the target	Optimize for automated tracking	Large Field of View (Low magnification)
	Increase signal	Use brightest indicators like GCaMP5k or GCaMP6s
Calcium	Collect more photons	Use high NA objectives (high magnification)
signal is weak and noisy	Detect more photons	Use high sensitivity camera CCD:Andor iXon or Photometrics Evolve CMOS: Hamamatsu Orca Flash or Andor Zyla
	Eliminate background fluorescence	 Agarose not agar Spinning disk confocal
Motion Artifacts Obscure Signal	Use fiducial references	co-express mCherry (or consider true ratiometric indicators)
How to validate	Use controls	Record from GFP instead of GCaMP and ensure your signal is flat

Challenge	Strategy	Solution	
Keeping up with the target	Optimize for automated tracking	Large Field of View (Low magnification)	
	Increase signal	Use brightest indicators like GCaMP5k or GCaMP6s	
Calcium	Collect more photons	Use high NA objectives (high magnification)	
signal is weak and noisy	Detect more photons	Use high sensitivity camera CCD:Andor iXon or Photometrics Evolve CMOS: Hamamatsu Orca Flash or Andor Zyla	
	Eliminate background fluorescence	 Agarose not agar Spinning disk confocal 	
Motion Artifacts Obscure Signal	Use fiducial references	co-express mCherry (or consider true ratiometric indicators)	
How to validate	Use controls	Record from GFP instead of GCaMP and ensure your signal is flat	

xy-motion artifacts

Challenge	Strategy	Solution	
Keeping up with the target	Optimize for automated tracking	Large Field of View (Low magnification)	time
	Increase signal	Use brightest indicators like GCaMP5k or GCaMP6s	
Calcium	Collect more photons	Use high NA objectives (high magnification)	
signal is weak and noisy	Detect more photons	Use high sensitivity camera CCD:Andor iXon or Photometrics Evolve CMOS: Hamamatsu Orca Flash or Andor Zyla	xy-motion artifacts
	Eliminate background fluorescence	 Agarose not agar Spinning disk confocal 	40x
Motion Artifacts Obscure Signal	Use fiducial references	co-express mCherry (or consider true ratiometric indicators)	
How to validate	Use controls	Record from GFP instead of GCaMP and ensure your signal is flat	z-motion artifacts

Challenge	Strategy	Solution	ਿ ਦ 1
Keeping up with the target	Optimize for automated tracking	Large Field of View (Low magnification)	time
	Increase signal	Use brightest indicators like GCaMP5k or GCaMP6s	
Calcium	Collect more photons	Use high NA objectives (high magnification)	
signal is weak and noisy	Detect more photons	Use high sensitivity camera CCD:Andor iXon or Photometrics Evolve CMOS: Hamamatsu Orca Flash or Andor Zyla	xy-motion artifacts
	Eliminate background fluorescence	 Agarose not agar Spinning disk confocal 	40x
Motion Artifacts Obscure Signal	Use fiducial references	co-express mCherry (or consider true ratiometric indicators)	time
How to validate	Use controls	Record from GFP instead of GCaMP and ensure your signal is flat	z-motion artifacts

- First optogenetic manipulations of behavior by ChR2 in any animal occurred in free moving C. elegans (Nagel et al., 2005)
- There is an ever-growing toolbox of optogenetic proteins tested in worms
- Previously, ability to target individual neurons was limited by genetic promotor
- Targeted illumination systems first in immobilized worms (Guo et al., 2009) and now in moving worms can provide single cell specificity

- First optogenetic manipulations of behavior by ChR2 in any animal occurred in free moving C. elegans (Nagel et al., 2005)
- There is an ever-growing toolbox of optogenetic proteins tested in worms
- Previously, ability to target individual neurons was limited by genetic promotor
- Targeted illumination systems first in immobilized worms (Guo et al., 2009) and now in moving worms can provide single cell specificity

- First optogenetic manipulations of behavior by ChR2 in any animal occurred in free moving C. elegans (Nagel et al., 2005)
- There is an ever-growing toolbox of optogenetic proteins tested in worms
- Previously, ability to target individual neurons was limited by genetic promotor
- Targeted illumination systems first in immobilized worms (Guo et al., 2009) and now in moving worms can provide single cell specificity

- First optogenetic manipulations of behavior by ChR2 in any animal occurred in free moving C. elegans (Nagel et al., 2005)
- There is an ever-growing toolbox of optogenetic proteins tested in worms
- Previously, ability to target individual neurons was limited by genetic promotor
- Targeted illumination systems first in immobilized worms (Guo et al., 2009) and now in moving worms can provide single cell specificity

- First optogenetic manipulations of behavior by ChR2 in any animal occurred in free moving C. elegans (Nagel et al., 2005)
- There is an ever-growing toolbox of optogenetic proteins tested in worms
- Previously, ability to target individual neurons was limited by genetic promotor
- Targeted illumination systems first in immobilized worms (Guo et al., 2009) and now in moving worms can provide single cell specificity

- One of two systems developed independently (Leifer et al, 2011; Stirman et al 2011)
- 80 Hz
- Round trip latency of 28 ms

700,000 mirrors

- One of two systems developed independently (Leifer et al, 2011; Stirman et al 2011)
- 80 Hz
- Round trip latency of 28 ms

Digital micromirror device 700,000 mirrors

Outline-based targeting

- One of two systems developed independently (Leifer et al, 2011; Stirman et al 2011)
- 80 Hz
- Round trip latency of 28 ms

Digital micromirror device 700,000 mirrors

Outline-based targeting

Fluorescence targeting Kocabas et al., 2012

- One of two systems developed independently (Leifer et al, 2011; Stirman et al 2011)
- 80 Hz
- Round trip latency of 28 ms

Digital micromirror device 700,000 mirrors

Outline-based targeting

Fluorescence targeting Kocabas et al., 2012

CoLBeRT has anterior-posterior accuracy

Channelrhodopsin in egg-laying motorneuron

Pegl-6::ChR2::YFP Gift of N. Ringstad CoLBeRT can reproducibly target a single motor neuron

Leifer et al, Nature Methods, 2011

Thursday, July 10, 14

Patterned illumination systems

	Vendor / Model	Software for real- time C. elegans targeting	References	
Off the Shelf Projector	Hitachi	open source (LabView)	Stirman et al., 2011 Stirman et al., 2012	
Build from components	VIALUX	open source (C) <u>http://git.io/colbert</u>	Leifer et al., 2011	
Pre-built	ANDOR an Oxford Instruments company Mightex Simply Brighter Rapp OptoElectronic	none publicly available	Kocabas et al, 2012; N/A N/A	

- Projector is well documented and cost effective but latency can be problematic
- Commercial systems will require software development

Combining calcium imaging and optogenetics in the moving worm

Thursday, July 10, 14

Shipley et al, Front Neural Circuits, 2014

Shipley et al, Front Neural Circuits, 2014

Thursday, July 10, 14

Thursday, July 10, 14

Current limitations of calcium imaging & optogenetics in freely moving worms

- A few neurons at a time from worms with sparse expression
- No z-sectioning
- Opsins and indicators must be on separate promotors and separate cells
- Simple descriptions of behavior

Future directions

- Expanded optogenetic toolbox (R-GECI; voltage indicators, brighter GCaMPs etc)
- Richer behavioral descriptions (Stevens et al., 2010)
- Bringing 3D imaging (Schroedel et al., 2013) and 3D stimulation to the movin worm

Future directions

- Expanded optogenetic toolbox (R-GECI; voltage indicators, brighter GCaMPs etc)
- Richer behavioral descriptions (Stevens et al., 2010)
- Bringing 3D imaging (Schroedel et al., 2013) and 3D stimulation to the movin worm

Future directions

- nge CaMPs "Eigenworm analysis"
- Expanded optogenetic toolbox (R-GECI; voltage indicators, brighter GCaMPs etc)
- Richer behavioral descriptions (Stevens et al., 2010)
- Bringing 3D imaging (Schroedel et al., 2013) and 3D stimulation to the moving worm

Posture Mode I

Whole brain imaging in immobilized worms

The Leifer Lab

Collaborators

Ashley Linder

Fred Shipley

George Plummer Kevin Mizes

Funding: SIMONS FOUNDATION Advancing Research in Basic Science and Mathematics

Slides will be posted at leiferlab.princeton.edu

Chris Clark Alkema Lab UMass Worcester Poster 65

Mark Alkema Aravi Samuel UMass Worcester Harvard

uel Chris Fang-Yen UPenn

https://www.zotero.org/groups/CeNeuroWorkshop2014