Whole-brain imaging: Overview of microscopy techniques

Francesco Randi Leifer Lab, Princeton University

Whole brain

Light field spinning-disk confocal wide-field temporal focusing light-sheet/SCAPE

Light field spinning-disk confocal wide-field temporal focusing light-sheet/SCAPE

Type of scan across the sample's volume

adapted from Weisenbruger, Vaziri, Annu. Rev. Neurosc. 2018

Light field spinning-disk confocal

wide-field temporal focusing

light-sheet/SCAPE

Type of scan across the sample's volume

adapted from Weisenbruger, Vaziri, Annu. Rev. Neurosc. 2018

Light field spinning-disk confocal

wide-field temporal focusing

light-sheet/SCAPE

Type of scan across the sample's volume

adapted from Weisenbruger, Vaziri, Annu. Rev. Neurosc. 2018

Light field spinning-disk confocal wide-field temporal focusing light-sheet/SCAPE

Type of scan across the sample's volume

adapted from Weisenbruger, Vaziri, Annu. Rev. Neurosc. 2018

+ light sources, photo-bleaching, volume rates, post-processing...

Point-spread function after reconstruction

3D volume in 1 shot

1.36 µm

2.55 µm

Point-spread function after reconstruction

Light source LED 1-photon interaction

Field of view \sim (350, 350, 30) μm with cellular resolution

Volume rate 5-50 vol/s (depends on SNR)

Special hardware microlens array

3D volume in 1 shot

Point-spread function after reconstruction

Light source LED 1-photon interaction

Field of view ~(350, 350, 30) μm with cellular resolution

Volume rate 5-50 vol/s (depends on SNR)

Special hardware microlens array

Main disadvantages

- xy resolution traded-off for z resolution
- Computation needed, no image in raw data

Other references Levoy et al., Journal of Microscopy 2009

Basic point-scanning confocal (rejection of out-of-focus emission)

Basic point-scanning confocal (rejection of out-of-focus emission)

But this requires

2D plane each frame scan along z

2D plane each frame scan along z

Light source continuous wave laser 1-photon interaction

Field of view max 400x400 μm at 40x (limited by spinning-disk hardware)

Volume rate ~5-10 vol/s (depends on SNR)

Special hardware spinning disk (plug-and-play)

Example

Other references Venkatachalam et al., PNAS 2015 Kato et al., Cell 2015

Example

into camera port of microscope fiber

Other references Venkatachalam et al., PNAS 2015 Kato et al., Cell 2015

Example

Light source continuous wave laser 1-photon interaction

Field of view $max 400x400 \mu m$ at 40x (limited by spinning-disk hardware)

Volume rate ~5-10 vol/s (depends on SNR)

Special hardware spinning disk (plug-and-play)

Main disadvantages

reduced effective exposure of each point

Light source continuous wave laser 1-photon interaction

Field of view $max 400x400 \mu m$ at 40x (limited by spinning-disk hardware)

Volume rate ~5-10 vol/s (depends on SNR)

Special hardware spinning disk (plug-and-play)

Main disadvantages

- reduced effective exposure of each point
- photo-bleaching: illumination not restricted to plane being imaged

2D plane each frame scan along z

2D plane each frame scan along z

2D plane each frame scan along z

Light source <u>amplified</u> pulsed laser 2-photons interaction

Field of view ~ 60 μm diameter (limited by energy/pulse)

Volume rate ~ 4-6 vol/s (depends on SNR)

Special hardware amplified pulsed laser (+ OPA)

diffraction grating

high-gain image intensifier

No excitation outside focal plane! → less bleaching

Main disadvantages

requires custom instrument and expensive laser

2D plane each frame scan along z

Light source <u>amplified</u> pulsed laser 2-photons interaction

Field of view $\sim 60 \ \mu m \ diameter \ (limited by energy/pulse)$

Volume rate ~ 4-6 vol/s (depends on SNR)

Special hardware amplified pulsed laser (+ OPA) diffraction grating high-gain image intensifier

No excitation outside focal plane! → less bleaching

Main disadvantages

- requires custom instrument and expensive laser
- few photocycles of the fluorophores (low SNR)

Other references Oron et al., Opt. Expr. 2005 Zhu et al., Opt. Expr. 2005

Swept confocally-aligned planar excitation

2D plane each frame oblique planes

Swept confocally-aligned planar excitation

2D plane each frame oblique planes

Hillman et al., Curr. Op. in Neurobiol. 2018

Swept confocally-aligned planar excitation

2D plane each frame oblique planes

Hillman et al., Curr. Op. in Neurobiol. 2018

Voleti, Optics and the Brain 2017

Swept confocally-aligned planar excitation

2D plane each frame oblique planes

Hillman et al., Curr. Op. in Neurobiol. 2018

Voleti, Optics and the Brain 2017

Light source continuous-wave laser 1-photon interaction

Field of view Volume rate

interdependent (see Voleti, Optics and the Brain 2017)

Special hardware multiple objectives galvo mirror

No excitation outside focal plane! → less bleaching

Main disadvantages

- Instrument not yet commercial (probably will be soon)
- Not published with worms

Other references Bouchard et al., Nat. Photonics 2015

Comparison

	Light source	simple/ commercial hardware	volume rate	Raw data are images	Drawbacks
Light field	LED	~	5-50 vol/s	×	ComputationResolution
Spinning-disk confocal	Continuous-wave lasers	~	~5-10 vol/s	~	Bleaching
Wide-field temporal- focussing	Amplified pulsed laser	*	4-6 vol/s	~	Pulsed laserLow SNR
SCAPE light- sheet	Continuous-wave laser	~	Depends on field of view	~	 No published use on worms

Comparison

		Light source	simple/ commercial hardware	volume rate	Raw data are images	Drawbacks
	Light field	LED	~	5-50 vol/s	×	ComputationResolution
	Spinning-disk confocal	Continuous-wave lasers	~	~5-10 vol/s	~	Bleaching
	Wide-field temporal- focussing	Amplified pulsed laser	*	4-6 vol/s	~	Pulsed laserLow SNR
	SCAPE light- sheet	Continuous-wave laser	~	Depends on field of view	~	 No published use on worms

Freely moving worms Any works in principle. Worm tracking + neuron tracking software needed.